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Abstract
Predicting the daily directional movement of the S&P 500 index is
a fundamental challenge in quantitative finance, characterized by
low signal-to-noise ratios and non-stationary market regimes. This
project presents a robust, multi-modal machine learning system
designed to forecast market direction by fusing quantitative market
data with macroeconomic indicators (VIX, Treasury Yields) and
AI-driven sentiment analysis.

The proposed architecture employs a Stacked Generalization
strategy, integrating a lightweight decoder-only Transformer (127k
parameters) and a Bidirectional LSTM (240k parameters). To mit-
igate risk, the system incorporates a tri-class labeling approach
(Up/Flat/Down) and a conformal-style confidence-thresholding
layer designed to selectively abstain from uncertain trades. Ex-
perimental results on historical data (2015–2025) demonstrate that
the proposed two-model ensemble achieves a directional accuracy
of 57.93%, significantly outperforming Random Forest (54.71%) and
pure LSTM baselines. When restricting to high-confidence days via
conformal prediction, realized accuracy on traded days increases
further into the mid-60% range at the cost of lower coverage.

CCS Concepts
• Computing methodologies→ Neural networks; • Applied
computing→ Economics.

Keywords
Stock Prediction, Transformers, LSTM, Ensemble Learning, Senti-
ment Analysis, Conformal Prediction

1 Introduction
1.1 Background and Problem
The Efficient Market Hypothesis (EMH) posits that asset prices
reflect all available information, rendering consistent prediction
impossible. However, behavioral finance suggests that market ineffi-
ciencies exist due to human psychology, heterogeneous information
processing, and delayed reactions to macroeconomic news. The cen-
tral problem addressed in this project is the low signal-to-noise ratio
(SNR) in daily stock returns. Financial time series are inherently
stochastic and non-stationary, meaning the statistical properties of
the data change over time (regime shifts), especially around crises
and macro announcements.

1.2 Importance
Accurate directional prediction, even marginally above 50%, trans-
lates to significant financial utility. A seemingly small edge of 2–3%
in directional accuracy can compound into large differences in
cumulative returns when combined with risk management and
position sizing. Beyond pure profit generation, accurate forecasting
aids in:

• designing hedging strategies against volatility spikes,
• stress-testing portfolios under differentmacroeconomic regimes,
• and allocating capital between risky and risk-free assets.

1.3 Existing Literature
Traditional approaches relied heavily on econometric models such
as theAutoregressive IntegratedMoving Average (ARIMA) [6]
and theGeneralizedAutoregressiveConditionalHeteroskedas-
ticity (GARCH) [7] family. These models excel at capturing linear
time dependencies and volatility clustering, respectively, but their
assumptions of linearity and weak stationarity often fail in the
complex, non-linear dynamics of financial markets.

The advent of machine learning provided significant advance-
ments by handling these non-linear relationships. Early adoption
included classical methods like Support Vector Machines (SVM)
and Random Forests, which offered improved interpretability and
robustness against high-dimensional input features.

The transition to Deep Learning (DL) introduced powerful se-
quence modeling capabilities. Recurrent Neural Networks (RNNs)
and specifically Long Short-Term Memory (LSTM) networks [2]
became a standard for time-series forecasting, due to their abil-
ity to capture long-range temporal dependencies and mitigate the
vanishing gradient problem. LSTMs have demonstrated better per-
formance than traditional models in capturing time-lagged cor-
relations in financial data [8]. More recently, the Transformer ar-
chitecture, originally developed for Natural Language Processing
(NLP) [1], has been adapted for time-series forecasting. Transform-
ers utilize a self-attention mechanism to weigh the importance of
different time steps globally, often outperforming RNNs by captur-
ing long-term dependencies more effectively and enabling better
parallelization [10].

In parallel, a separate line of research focuses on integrating
unstructured data. Financial NLP models, such as domain-specific
variants of BERT (e.g., FinBERT [5]), have been instrumental in
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converting vast amounts of news, reports, and social media text
into quantitative sentiment or tone features, providing a crucial
multi-modal input that captures market behavioral aspects often
missed by pure price data. This project synthesizes these strands
by combining state-of-the-art sequence models (LSTM and Trans-
former) with multi-modal inputs (price, macro, and sentiment) into
a single ensemble framework.

1.4 Data Collection
The dataset combines three major information sources:

• Market data: Daily OHLCV data for the S&P 500 index,
major US indices (Dow, NASDAQ), and global indices (Nikkei,
HSI, Shanghai Composite).

• Macro and risk indicators: Volatility index (VIX), 10-year
Treasury yield (TNX), and commodity prices such as Gold
and Oil, all aligned to the S&P 500 trading calendar.

• Textual sentiment: News headlines and social media posts
converted into sentiment features using a large language
model–based sentiment scorer (Google Gemini), inspired by
recent financial sentiment models such as FinBERT.

All time series are merged on trading dates, with forward-filling
applied only within reasonable gaps to avoid introducing artificial
information.

1.5 System Overview and Components
The system implements a robust pipeline:

• Ingestion and alignment: Aggregation of OHLCV data,
global indices, macro indicators, and sentiment scores into a
unified panel.

• Feature engineering:Construction of a compact but expres-
sive feature set capturing momentum, volatility, cross-asset
relationships, and sentiment.

• ML components: A hybrid feature extractor using Trans-
formers (attention pooling) and BiLSTMs, combined using a
stacking meta-learner.

• Risk-aware decision layer: A tri-class labeling mechanism
(Up/Flat/Down) and conformal-style confidence thresholds
are implemented to identify and abstain from low-confidence
trading days.

1.6 Summary of Experimental Results
Across a 10-year backtest, the proposed ensemble system achieves
a directional accuracy of 57.93% on a strictly held-out test period,
compared to 54.71% for a tuned Random Forest baseline. Under
a selective trading policy that abstains on low-confidence days,
the realized accuracy on executed trades rises into the mid-60%
range, while maintaining a non-trivial coverage of days. These
results show that careful feature engineering, modern sequence
models, and calibrated abstention can extract a small butmeaningful
predictive signal from noisy financial data.

2 Definitions and Problem Statement
2.1 Important Definitions
We define the following core concepts used throughout the report:

Figure 1: High-level architecture of the proposed hybrid en-
semble system, illustrating the data flow from multi-modal
ingestion through the Transformer/LSTM feature extractors
to the final stacked meta-learner and decision logic.

• Input sequence (𝑋𝑡 ): For each prediction date 𝑡 , a tensor
of shape (𝐿, 𝐹 ) = (20, 97) representing the past 𝐿 = 20 trad-
ing days of 𝐹 = 97 distinct features (price-based indicators,
macro variables, sentiment scores).

• Return (𝑟𝑡 ): The close-to-close percent return of the S&P
500 on day 𝑡 ,

𝑟𝑡 = 100 × Close𝑡 − Close𝑡−1
Close𝑡−1

.

• Prediction target (𝑦𝑡+1): The directional movement of the
S&P 500 close price at time 𝑡 + 1, based on 𝑟𝑡+1.
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• Tri-class labels:

𝑦𝑡+1 =


Up, 𝑟𝑡+1 > 𝜃,

Down, 𝑟𝑡+1 < −𝜃,
Flat, otherwise,

where 𝜃 is a deadband threshold (0.10%) that filters out very
small moves.

• Coverage:The proportion of days onwhich themodel issues
an Up/Down decision instead of abstaining.

• Directional accuracy (DA):

DA =
1
𝑁

𝑁∑︁
𝑡=1

1
[
sign(𝑟𝑡 ) = sign(𝑟𝑡 )

]
,

where 𝑟𝑡 is the predicted return and 1[·] is the indicator
function.

2.2 Problem Statement
Given: A historical dataset 𝐷 = {(𝑋𝑡 , 𝑟𝑡+1)}𝑇𝑡=1 containing market,
macroeconomic, and sentiment features.
Objective: Train a function 𝑓 (𝑋𝑡 ) that maximizes the directional
accuracy on unseen future data, subject to realistic constraints on
look-ahead and trading frequency.
Constraints:

(1) No look-ahead bias: All transformations, including scaling
and label generation, use only information available up to
time 𝑡 . Train/validation/test splits are strictly chronological.

(2) Robustness across regimes: The model should maintain
performance across both low- and high-volatility regimes,
as proxied by VIX levels.

(3) Practical deployability: Complexity must remain manage-
able for daily retraining and monitoring.

3 Overview of Proposed System
The system follows a hierarchical stacked generalization approach:

(1) Ingestion layer: Fetches data from Yahoo Finance (prices
and volumes), macroeconomic sources (VIX, TNX, commodi-
ties), and curated news/sentiment feeds.

(2) Preprocessing layer: Cleans missing values, constructs
rolling windows of length 𝐿 = 20, and normalizes features
using scalers fitted only on the training set. Sequence con-
struction is done within each temporal split to avoid leakage.

(3) Base learner layer:Two deep learningmodels (Transformer
and BiLSTM) process the data in parallel to extract latent
representations and output per-class probabilities.

(4) Meta-learner layer: A multinomial Logistic Regression
meta-model takes the concatenated base-model outputs and
produces the final probability distribution over {Up, Flat,
Down}.

(5) Decision layer: Applies conformal-style probability thresh-
olds to decide whether to take a Long, Short, or No-Trade
decision, so that the system only trades on relatively high-
confidence days.

This modular design lets us ablate or replace components (for ex-
ample adding gradient-boosted trees to the stack) without changing
the rest of the pipeline.

4 Technical Details
4.1 Feature Extraction
We engineer a compact feature set of 97 variables:

• Price-based momentum: Short-horizon log returns over
1, 3, 5, and 10 days, and moving-average deltas (𝑀𝐴5,𝑀𝐴10,
𝑀𝐴20,𝑀𝐴50).

• Oscillators: Relative Strength Index RSI(14), MACD(12,26,9),
and high-low price range as a fraction of close.

• Volume and volatility: Volume ratio relative to a 20-day av-
erage, realized volatility over rolling windows, and z-scored
returns.

• Macro risks: VIX index, 10-year Treasury yield (TNX), Gold
and Oil futures, and the Dollar Index.

• Global context: Returns of Nikkei 225, HSI, and Shanghai
Composite, as well as their rolling correlations with the S&P
500.

• Sentiment features: Aggregated daily sentiment scores
derived from financial headlines and selected Reddit posts
using a large language model–based sentiment classifier
(Google Gemini), smoothed using an exponential moving
average.

4.2 Predictive Modeling
The hybrid ensemble comprises two optimized architectures.

4.2.1 Decoder-only Transformer.

• Architecture: Input 20 × 97 sequences are projected to 96-
dimensional embeddings, combined with sinusoidal posi-
tional encodings, and passed through three Transformer
blocks with six attention heads each.

• Pooling:A learnable AttentionPooling1D layer assignsweights
to time steps based on their relevance to the prediction in-
stead of simple average pooling.

• Regularization: Dropout (0.2) and Layer Normalization are
used throughout; early stopping on validation loss prevents
overfitting.

• Parameter count: About 127k trainable parameters.

4.2.2 Bidirectional LSTM.

• Architecture: BiLSTM(64 units)→ Batch Normalization→
BiLSTM(32 units)→ dense layers with ReLU activation.

• Regularization: Dropout (0.2) and Batch Normalization are
applied to prevent overfitting and stabilize gradients.

• Parameter count: About 240k trainable parameters.

4.2.3 Stacked Ensemble (Meta-Model). The outputs of the Trans-
former and LSTM are concatenated and fed into a multinomial Lo-
gistic Regression meta-model. The meta-learner learns to weigh the
base models based on their historical reliability and produces a final
probability distribution over the tri-class labels. These probabilities
are then used directly in the downstream confidence-thresholding
scheme.

4.3 Conformal-Style Calibration and Abstention
To obtain calibrated confidence levels, we implement a conformal-
style calibration scheme based on a held-out validation split. For
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Figure 2: Training and validation loss (left) and MAE (right)
for the stacked ensemble.

each example in the calibration set, we compute a non-conformity
score

𝑠 (𝑥,𝑦) = 1 − 𝑝𝜃 (𝑦 | 𝑥),
where 𝑝𝜃 (𝑦 | 𝑥) is the ensemble’s predicted probability for the
true class. We then choose a threshold 𝜏conf corresponding to a
desired miscoverage level on this calibration set. At test time, if
the maximum predicted class probability 𝑝max (𝑥) is below 𝜏conf, the
system abstains and labels the day as Flat; otherwise, it outputs the
argmax class (Up or Down). This simple confidence-thresholding
mechanism produces a controllable accuracy–coverage trade-off
without changing the underlying architectures.

4.4 Training Details
All deep models are trained with the Adam optimizer (initial learn-
ing rate 10−3) and a batch size of 64. We employ:

• early stopping with patience of 10 epochs on validation loss,
• learning-rate reduction on plateau,
• and model checkpoints restoring the best validation snap-
shot.

Walk-forward cross-validation is used for hyperparameter tuning:
the training window is rolled forward in time, with each model
evaluated on the next contiguous validation window. The train-
ing and validation loss and MAE curves in Figure 2 show stable
convergence and limited overfitting.

5 Experiments
5.1 Data Description
The dataset spans roughly 10 calendar years (2015–2025), corre-
sponding to about 2,500 trading days. We use a strict chronological
split:

• Training: Approximately 70% of the earliest data (2015–
2021).

• Validation: The next 15% (2022–2023), used for hyperpa-
rameter tuning and conformal calibration.

• Testing: The most recent 15% (late 2023–2025), used only
for final evaluation.

Sequence windows are built separately within each split so that no
information from the future leaks into the past.

5.2 Evaluation Metrics
We evaluate both the regression and classification perspectives:

Figure 3: Left: distribution of daily returns (actual vs. model
predictions). Right: scatter of predicted vs. actual next-day
returns.

• Mean absolute error (MAE): The average magnitude of
the prediction error for next-day returns.

• Directional accuracy (DA):Whether the sign of the pre-
dicted return matches the sign of the realized return.

• Accuracy vs. coverage: For different abstention thresholds,
we compute the accuracy on days where the model decides
to trade and the fraction of days covered.

• Cumulative returns: Backtested returns from a simple
long/short strategy that takes a unit position in the predicted
direction and closes it at the end of the day, compared against
a buy-and-hold benchmark.

Figure 3 compares the distribution of predicted vs. actual returns
and shows a scatter of predictions against realized returns.

5.3 Baseline Methods
To put the proposed ensemble in context, we compare it against
a classical machine learning baseline suitable for tabular financial
features. In our implementation, we use a tuned Random Forest
classifier as the primary baseline, since it performed best among
the simple models we tested on the validation set and is easy to
interpret.

5.4 Overall Performance
Table 1 presents the results on the held-out test set.

Table 1: Performance comparison on test set

Method MAE Dir. Accuracy

Random Forest (baseline) 1.5135 54.71%
Pure LSTM (baseline) 0.7445 54.71%
Transformer component 0.7375 53.80%
Ensemble (3-model) 0.7863 56.55%
Ensemble (2-model) [proposed] 0.7401 57.93%

The proposed two-model ensemble achieves the highest direc-
tional accuracy of 57.93%. It significantly outperforms the weighted-
averaging ensemble strategy (which achieved only 42.07% in prelim-
inary experiments), demonstrating that learning the combination
weights via a meta-model is superior to heuristic averaging.
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Figure 4: Cumulative returns of the model-based long/short
strategy compared to a buy-and-hold S&P 500 benchmark on
the test period.

Figure 5: Accuracy versus coverage for different confidence
thresholds in the conformal prediction layer.

Figure 4 shows the cumulative return of the model-based trading
strategy compared to a buy-and-hold benchmark. Figure 5 summa-
rizes the trade-off between accuracy and coverage under different
confidence thresholds.

5.5 Case Study: Next-Day Prediction
To validate the system in a live-style setting, we perform a predic-
tion for the trading day following the dataset end:

• Current price: $6,840.20.
• Predicted change (stacked ensemble): +0.12% (Up).

• Predicted price: $6,848.34.
• Model confidence: The stacked meta-model assigns prob-
ability 0.684 to the Up class, which exceeds the conformal
threshold, so the strategy takes a long position.

5.6 Ablation Study
We analyze the contribution of several key technical components:

• AttentionPooling1D: Replacing attention pooling with
simple average pooling reduces validation directional ac-
curacy by about 1.2 percentage points, showing the impor-
tance of learnable time-step weighting in noisy financial
sequences.

• Stacking vs. single models: The meta-model consistently
improves over either basemodel alone, suggesting that Trans-
former and LSTM components capture complementary as-
pects of the signal.

• Tri-class labeling: Tri-class labeling with abstention yields
higher accuracy on covered days (into the low 60% range)
while skipping low-magnitude, low-signal days, as shown
by the accuracy–coverage curve.

6 Discussion and Practical Limitations
Despite the encouraging results, achieving 80% accuracy on daily
S&P 500 direction is unrealistic in practice. Market efficiency and
the low signal-to-noise ratio of daily index moves mean that most
variation in returns is essentially random. Evidence from both
academia and industry suggests that even sophisticated models
rarely exceed the mid-50% range on broad indices.

Label noise is substantial: small daily moves are often within
the bid–ask spread or easily reversed, making their sign effectively
random. The tri-class labeling scheme acknowledges this by treating
very small moves as Flat instead of forcing an Up/Down decision.

Non-stationarity and regime shifts cause models trained on past
data to degrade over time. Without frequent retraining and careful
monitoring, a highly tunedmodel can quickly becomemiscalibrated
when volatility regimes change. Finally, transaction costs, slippage,
and market impact reduce the real-world profitability of any sta-
tistical edge. Backtests that ignore these factors tend to overstate
performance. In a realistic deployment, additional risk controls
(position limits, maximum drawdown constraints) must be added
on top of the predictive model.

7 Related Work
Time-series forecasting in finance historically relied on ARIMA
and GARCH models, which capture linear dependencies and con-
ditional heteroskedasticity but struggle with non-linearities and
complex cross-asset effects. LSTMs and other recurrent networks
became popular in the 2010s for modeling long-range dependencies
in price data. More recently, Transformer-based architectures have
been adapted for financial time series, often combined with atten-
tion mechanisms to focus on important timesteps. Parallel work
on financial NLP has used BERT-style encoders (such as FinBERT)
to map news and textual disclosures into sentiment features. This
project combines these strands by fusing numerical Transformer
outputs with NLP-derived sentiment signals in a heterogeneous
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ensemble and by incorporating a conformal-style abstention mech-
anism based on confidence thresholds.

8 Conclusion and Future Work
This project implements a hybrid deep learning system for S&P
500 prediction. By using a stacked ensemble of Transformers and
LSTMs, we achieve a directional accuracy of 57.93%, beating tradi-
tional baselines such as Random Forest and single LSTM models.
Furthermore, by defining the problem as a tri-class classification
task, we enable a risk-mitigation mechanism that allows the model
to abstain from uncertain trades. The experiments show that while
perfect prediction is impossible due to market efficiency, small but
statistically meaningful edges can be gained through rigorous fea-
ture engineering, modern sequence models, and ensemble stacking.

Future work will:
• extend the target horizon toweekly returns, where the signal-
to-noise ratio is higher;

• incorporate gradient-boosted trees (e.g., XGBoost or Light-
GBM) into the stack for additional robustness;

• explore reinforcement learning for dynamic position sizing
based on calibrated probabilities;

• and develop a paper-trading dashboard with monitoring
hooks to evaluate the system under live market conditions
before any real deployment.
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Code Availability:
The source code for this project is available at:
https://github.com/Pragyan-dev/snp500-project

https://github.com/Pragyan-dev/snp500-project
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